The Bochner Laplacian, Riemannian submersions, heat content asymptotics, and heat equation asymptotics

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heat content asymptotics for Riemannian manifolds with Zaremba boundary conditions

The existence of a full asymptotic expansion for the heat content asymptotics of an operator of Laplace type with classical Zaremba boundary conditions on a smooth manifold is established. The first three coefficients in this asymptotic expansion are determined in terms of geometric invariants; partial information is obtained about the fourth coefficient.

متن کامل

Improved intermediate asymptotics for the heat equation

This letter is devoted to results on intermediate asymptotics for the heat equation. We study the convergence towards a stationary solution in self-similar variables. By assuming the equality of some moments of the initial data and of the stationary solution, we get improved convergence rates using entropy / entropy-production methods. We establish the equivalence of the exponential decay of th...

متن کامل

The Heat Content Asymptotics of a Time Dependent Process

Let M be a compact manifold with smooth boundary. We study the heat content asymptotics on M defined by a time dependent heat source and time dependent boundary conditions. We adopt the following notational conventions: let M be a compact Riemannian manifold with smooth boundary ∂M , let ∆ = δd be the scalar Laplacian on M , let x be a point of the interior of M , let y be a point of the bounda...

متن کامل

Heat Content Asymptotics with Transmittal and Transmission Boundary Conditions

We study the heat content asymptotics on a Riemannian manifold with smoooth boundary defined by Dirichlet, Neumann, transmittal and transmission boundary conditions. Subject Classification: 58J50

متن کامل

Heat Content Asymptotics with Singular Initial Temperature Distributions

We study the heat content asymptotics with either Dirichlet or Robin boundary conditions where the initial temperature exhibits radial blowup near the boundary. We show that there is a complete small-time asymptotic expansion and give explicit geometrical formulas for the first few terms in the expansion.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Czechoslovak Mathematical Journal

سال: 1999

ISSN: 0011-4642,1572-9141

DOI: 10.1023/a:1022439916298